
Noname manuscript No.
(will be inserted by the editor)

Towards Flexibility and Robustness of LSM Trees

Andy Huynh · Harshal A. Chaudhari · Evimaria Terzi · Manos
Athanassoulis

Received: date / Accepted: date

Abstract Log-Structured Merge trees (LSM trees) are
increasingly used as part of the storage engine behind
several data systems, and are frequently deployed in the
cloud. As the number of applications relying on LSM-
based storage backends increases, the problem of perfor-
mance tuning of LSM trees receives increasing attention.
We consider both nominal tunings – where workload and
execution environment are accurately known a priori –
and robust tunings – which consider uncertainty in the
workload knowledge. This type of workload uncertainty
is common in modern applications, notably in shared
infrastructure environments like the public cloud.

To address this problem, we introduce Endure, a
new paradigm for tuning LSM trees in the presence
of workload uncertainty. Specifically, we focus on the
impact of the choice of compaction policy, size ratio,
and memory allocation on the overall performance. En-
dure considers a robust formulation of the throughput
maximization problem and recommends a tuning that
offers near-optimal throughput when the executed work-
load is not the same, instead in a neighborhood of the
expected workload. Additionally, we explore the robust-
ness of flexible LSM designs by proposing a new unified
design called K-LSM that encompasses existing designs.
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We deploy our robust tuning system, Endure, on a
state-of-the-art key-value store, RocksDB, and demon-
strate throughput improvements of up to 5× in the
presence of uncertainty. Our results indicate that the
tunings obtained by Endure are more robust than tun-
ings obtained under our expanded LSM design space.
This indicates that robustness may not be inherent to
a design, instead, it is an outcome of a tuning process
that explicitly accounts for uncertainty.

1 Introduction

Ubiquitous LSM-based Key-Value Stores. Log-
Structured Merge trees (LSM trees) are commonly de-
ployed as the backend storage engine of modern key-
value stores [61]. The high ingestion rates and fast reads
provided by LSM trees have led to their wide adoption
by systems like RocksDB [32] at Meta, LevelDB [34]
and BigTable [18] at Google, HBase [7], Cassandra [8]
at Apache, WiredTiger [86] at MongoDB, X-Engine [40]
at Alibaba, and DynamoDB [30] at Amazon.

LSM trees store incoming data within a memory
buffer, which is subsequently flushed to storage when
full, and merged with earlier buffers to form a collection
of sorted runs with exponentially increasing sizes [56].
Frequent merging of sorted runs leads to a higher merg-
ing cost, but facilitates faster lookups (leveling). On the
flip side, lazy merging policies (tiering) trade lookup
performance for lower merging costs [73].
Tuning LSM trees. As the number of applications
relying on LSM-based storage backends increases, the
problem of performance tuning LSM trees has garnered a
lot of attention. A common assumption of these methods
is that when creating an instance-optimized system [51],
one has complete knowledge of the expected workload and
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the execution environment. Given such knowledge, prior
work focuses on optimizing LSM tree parameters such
as memory allocation for Bloom filters across different
levels, memory distribution between the buffers and the
Bloom filters, and the choice of merging policies (i.e.,
leveling or tiering) [26]. Different optimization objectives
have led to hybrid merging policies with more fine-
grained tunings [28,29,42]; optimized memory allocation
strategies [14,49,53], Bloom filter variations [58,89], new
compaction strategies [5,54,72,73,90], and exploitation
of data characteristics [1,67,88].

Even when accurate information about the work-
load and underlying hardware are available, tuning data
systems is a notoriously difficult research problem [19,
22,79]. Additionally, the explosive growth in the usage
of the cloud infrastructure for data management [37,
68] has exacerbated this problem due to the increase in
uncertainty and variability in workloads [23,33,38,39,
62,66,74,75,76,87].

To address this challenge, we introduce Endure1, a
general framework for providing robust tunings under
uncertain input workloads. Endure introduces a tuning-
under-uncertainty paradigm by formulating the classic
tuning problem as a robust optimization problem. Our
experiments demonstrate the benefits of robust tunings
compared to existing baselines for tuning LSM trees.
Expanding the LSM Design Space. In this paper,
we build on our prior work [41] and expand it along
multiple dimensions. We take a more critical look at the
performance of LSM tunings for flexible LSM designs
both with and without workload uncertainty. After care-
ful consideration of existing LSM designs and tuning
approaches—e.g., Monkey [26] and Dostoevsky [28]—
we propose a general and more unified LSM design,
termed K-LSM. Our design allows each level to have a
variable number of potentially overlapping files. There-
fore, we can describe both standard compaction policies
(i.e., tiering [48] and leveling [61]), and existing hybrid
compaction policies. We demonstrate that K-LSM can
reduce to data layouts such as Lazy Leveling [29,28],
Dostoevsky [28], and 1-Leveling [73], thus making it a
unified LSM design. Furthermore, we accompany the
K-LSM design with a cost model, which in turn can
capture the costs of all aforementioned approaches.
Performance of LSM Tunings. Next, we check the
feasibility of tuning an LSM tree under the assumption
of an accurately known workload (no uncertainty) using
the K-LSM cost model. We show that this can be done
using off-the-shelf numerical solvers. Our experiments
indicate that tunings obtained using flexible designs
provide better system performance when compared to

1 An earlier version of this work appeared in VLDB 2022 [41].

those obtained from state-of-the-art LSM designs. To
the best of our knowledge, we are the first to propose a
unified LSM cost model.
Robustness of LSM Trees. In the second part of the
work, we present results with Endure [41], our system
for robust LSM tree tuning—i.e., LSM tree tuning in
the presence of workload uncertainty. Here, we depart
from the classical view of database tuning, which as-
sumes accurate knowledge about the expected workload.
Towards this, Endure introduces a new robust tuning
paradigm that incorporates expected uncertainty into
optimization and applies it to LSM trees.

We formulate the Robust Tuning problem that
seeks an LSM tree configuration that maximizes the
worst-case throughput over all the workloads in the
neighborhood of an expected workload. We use the no-
tion of KL-divergence between probability distributions
to define the neighborhood size, implicitly assuming
that the uncertain workloads would be contained in the
neighborhood. As the KL-divergence boundary condi-
tion approaches zero, our problem becomes equivalent to
the classical optimization problem (henceforth referred
to as the Nominal Tuning problem). More specifically,
our approach uses as input the expected size of the
uncertainty neighborhood, which dictates the qualita-
tive characteristics of the solution. Intuitively, the larger
the size of the uncertainty neighborhood, the larger the
workload discrepancy a robust tuning can accommodate.
Leveraging work on robust optimization from the Oper-
ations Research and Machine Learning communities [10,
11,12], we efficiently solve the Robust Tuning problem
and find the robust tuning for LSM tree-based storage
systems. A similar problem of using workload uncer-
tainty while determining the physical design of column-
stores has been explored in prior work [60]. However,
this methodology is not well-suited for the LSM tuning
problem. We provide additional details regarding this
in Section 12.
Flexibility in Design and Robustness. Finally, we
experimentally investigate whether the nominal tunings
obtained by various LSM designs are inherently robust.
That is, we investigate whether the lack of robustness
in the state-of-the-art nominal tunings is a consequence
of the designs not being expressive enough, or a result
of the tuning process’s lack of consideration for uncer-
tainty. Our findings indicate that the nominal tunings
obtained via K-LSM provide a benefit over traditional
LSM designs in scenarios where the workload does not
deviate from the expected. However, this benefit does
not appear in the contrasting scenario where the work-
load does deviate from the expected. Rather, tunings
obtained from Endure exhibit higher throughput with
simpler LSM designs than nominal tunings with flexible
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LSM designs. Hence, we conclude flexibility does not
inherently provide robustness.
Contributions. To the best of our knowledge, our
work is the first that presents a unified LSM design
with an associated cost model that is a generalization
of all the existing state-of-the-art approaches. Moreover,
we present the first systematic approach to selecting a
robust tuning for instance-optimized LSM tree-based
key-value stores under workload uncertainty, utilizing
robust optimization techniques from machine learning.
Finally, we are the first to explore whether the robust-
ness of an LSM tree can be an inherent design property
or a result of explicitly tuning for uncertainty.

Our technical and practical contributions can be
summarized as follows:

– We introduce K-LSM, a new unified LSM design that
describes both classic designs and recently proposed
state-of-the-art hybrid designs (§4). We present its
implications on classical LSM tuning (§5).

– We incorporate workload uncertainty into LSM tun-
ings and provide algorithms to compute robust tun-
ings efficiently. Endure can be tuned for varying de-
grees of workload uncertainty, and is practical enough
to be adopted by the current state-of-the-art LSM
storage engines (§6).

– We develop an uncertainty benchmark that can eval-
uate the robustness of the current state-of-the-art
LSM-based systems (§7).

– In our model-based analysis, we show that robust
tunings obtained from Endure provide up to 5×
higher throughput when faced with uncertain work-
loads (§8).

– We deploy and test Endure in RocksDB, a state-
of-the-art LSM storage engine, to demonstrate the
feasibility of using robust tunings on commercial sys-
tems. We show that Endure achieves up to 2.4×
throughput speedups, and these gains are indepen-
dent of the database size (§9).

– By evaluating the robustness of the K-LSM design,
we demonstrate that robustness is not inherent to a
design, rather is an outcome of a tuning process that
accounts for uncertainty (§10).

– To encourage reproducible research, we make all our
code publicly available2.

2 Background on LSM Trees

Basics. LSM trees use the out-of-place paradigm to
store key-value pairs [56]. Inserts, updates, and deletes

2 https://github.com/BU-DiSC/endure
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Fig. 1: Overview of the structure of an LSM tree

are placed in a memory buffer. Once full, its contents are
sorted based on the key, forming an immutable sorted
run, then flushed to secondary storage. Sorted runs are
subsequently organized into logical levels.

Thus, for an LSM tree with L disk-resident levels,
we label the memory buffer as Level 0 and the remaining
levels in storage from 1 to L. The disk-resident levels
have exponentially increasing sizes dictated by a tunable
size ratio T . Figure 1 shows an overview of an LSM tree.

We denote the number of bits of main memory al-
located to the buffer mbuf , which holds several entries
with a fixed entry size E. For example, in RocksDB, the
default buffer size is mbuf = 64MB, and depending on
the application, the entry size typically varies between
64B and 1KB. The buffer at Level 0 is mutable and
can be updated in place, while runs starting at Level 1
and beyond are immutable. Each Level i has a capacity
threshold of (T − 1) · T i−1 · mbuf

E entries, thus, the level
capacities are exponentially increasing by a factor of T .
The total number of levels L for a given T is

L(T ) =
⌈

logT

(
N · E

mbuf
+ 1

) ⌉
, (1)

where N is the total number of entries [26,58,72].
Compaction Policies: Leveling and Tiering. Clas-
sically, LSM trees support two compaction policies: lev-
eling and tiering [56,70]. In leveling, each level contains
at most one run, and every time a run in Level i − 1
(i ≥ 1) is flushed to Level i, it greedily sort-merges
(compacts) with the run from Level i, assuming it exists.
With tiering, every level must accumulate T runs before
a compaction is triggered. During a compaction, entries
with a matching key are consolidated, and only the most
recent valid entry is retained [31,61,73].
Flexible Compaction Policies. The different LSM
tree compaction policies form a continuum between a
read-optimized and write-optimized data layout, where
leveling and tiering policies are the two extremes [70].
Hybrid compaction policies allow a smooth transition
of the tree shape to strike a balance between the read

https: //github.com/BU-DiSC/endure
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and write throughput [28,29]. Lazy Leveling assigns the
upper levels of the LSM tree to a tiering policy and
the last level to a leveling policy to improve the worst-
case cost for writes while maintaining near-optimal read
performance. This is motivated by the fact that the last
level statistically contains most of the LSM tree’s data.

This notion of assigning different compaction policies
per level is further expanded by the Dostoevsky design
and the Fluid LSM tree [28]. Rather than assigning each
level a different compaction policy, the Fluid LSM tree
uses two limits for the number of runs per level, one for
the last level of the LSM tree, and a different one for all
the upper levels. This allows the Fluid LSM design to
express fine-grained hybrid compaction policies between
leveling and tiering.

In this work, we further expand this approach by
proposing K-LSM, a more expressive LSM compaction
model that unifies all prior approaches by allowing each
level to parameterize its capacity in terms of the number
of files it can hold. In Section 4, we discuss K-LSM
in detail and demonstrate that it can explore a wider
design space. We further discuss its implications on the
robustness of its tunings.
LSM tree Operations. An LSM tree supports three
basic operations: (a) writes of new key-value pairs, (b)
point queries, and (c) range queries.

Writes: All write operations are handled by a buffer
append. Once the buffer is full, a compaction is triggered.
Any write may include either a new key-value pair, an
existing key that updates its value, or a special entry
called a tombstone that deletes an existing key.

Point Queries: A point query searches for the value
of a specific key. It begins by looking at the memory
buffer and then traverses the tree from the smallest
to the largest level. At each level, the lookup moves
from the most recent sorted run to the oldest sorted
run, terminating when it finds the first matching entry.
Note that a point query might return either an empty
or a non-empty result. We differentiate the two as it has
been shown workloads with empty point queries can be
further optimized [26].

Range Queries: A range query lookup returns the
most recent version of all keys within the desired range
by potentially scanning every run at every level.
Optimizing Lookups. LSM tree lookups are optimized
using filters and indexes (also termed fence pointers) [71].
In the worst case, a lookup needs to probe every run,
however, LSM engines use one filter per run [26,32] to
reduce this cost. While the filters are part of each run,
they are aggressively cached in memory. One of the most
common filter designs used in LSM trees is the Bloom
filter [13]. A Bloom filter is a probabilistic membership
test data structure that responds with a false positive

rate f , which is a function of the ratio between the
number of memory bits allocated mfilt and the number
of elements indexed. By probing the Bloom filter of a
particular level, an LSM tree can skip accessing that
run altogether when it does not contain the indexed
key. In practice, for efficient storage, Bloom filters are
maintained at the granularity of files [31]. Fence pointers
hold the smallest key for each disk page of all sorted runs
into main memory [26] to quickly identify which page(s)
to read for a lookup. In this work, we assume that
fence pointers are required and consume a fixed amount
of memory in the system. Therefore, any operation
that requires a single I/O will only require one logical
page lookup by the operating system by following the
corresponding fence pointer. We further assume that a
single I/O operation corresponds to exactly one logical
page access.
Tuning LSM Trees. An LSM tree is a highly tunable
data structure where the size ratio, compaction policy,
exact shape of the tree, and memory allocation can all
be tuned. Classical LSM tuning strategies start with an
offline analysis and assume the workload information
and the execution environment are accurately known
a priori to deployment. In comparison, online tuning
strategies change LSM tuning knobs in response to work-
loads, however, the design parameters that mainly drive
the performance must be dictated before deployment [50,
56]. While LSM trees are also deployed as collections
that can be co-tuned [55], here we focus on deploying
and tuning single instances of LSM trees. Under that
assumption, LSM tree tuning considers the optimal allo-
cation of available main memory between Bloom filters
and buffering [49,53], the optimal choice of size ratio,
and the data layout strategy [26,27,28]. Such design de-
cisions are common across industry-standard LSM-based
engines such as Apache Cassandra [8], AsterixDB [6],
RocksDB [32], and InfluxDB [47]. Lastly, recent work
has introduced new hybrid merging strategies [29,73],
and optimizations for faster data ingestion [57] and
performance stability [54].

3 Preliminaries

As we discussed above, LSM trees have two types of
parameters: the design parameters that are changed
primarily for performance, and the system parameters
that are a part of the system the LSM tree is deployed
on, and therefore untunable.
Design Parameters. The design parameters we con-
sider in this paper are the size ratio (T ), the memory
allocated to the Bloom filters (mfilt), the memory allo-
cated to the write buffer (mbuf), and the compaction
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Table 1: Summary of problem notation

Type Term Definition
Design mfilt Memory allocated for Bloom filters

mbuf Memory allocated for the write buffer
T Size ratio between consecutive levels
π Compaction policy (tiering/leveling)

System m Total memory (filters+buffer) (m = mbuf + mfilt)
E Size of a key-value entry
B Number of entries that fit in a page
N Total number of entries

Workload z0 Percentage of zero-result point lookups
z1 Percentage of non-zero-result point lookups
q Percentage of range queries
w Percentage of writes

policy (π). These are ubiquitous design parameters and
have been extensively studied as having the largest im-
pact on performance [26,56]. Therefore, we focus on
these parameters to define a problem that is not bound
to any specific LSM engine. Recall that the compaction
policy refers to either leveling or tiering in a classical de-
sign, or may contain other parameters used to describe
hybrid designs as we discuss in Section 4.2.

System Parameters. In production deployments, per-
formance depends on various system parameters (e.g.,
total memory m, page size B), and other non-tunable
data-dependent parameters (e.g., data entry size E,
amount of data N). We assume these parameters are
known a priori and fixed throughout the tuning process.

LSM Tree Configuration. We use Φ to denote the
LSM tree tuning configuration which describes the val-
ues of the tunable parameters together Φ := (T, mfilt, π).
Note that we only use the memory for Bloom filters
mfilt and not mbuf , because the latter can be derived
using the total available memory (mbuf = m − mfilt).

Workload. The choice of the parameters in Φ depends
on the input (expected) workload, i.e., the fraction
of empty lookups (z0), non-empty lookups (z1), range
lookups (q), and write (w) queries within an observation
period. Such a period is defined either over a fixed time
interval or over a certain number of queries. Note that
this workload representation is common for analyzing
and tuning LSM trees [26,56]. Additionally, complex
workloads (i.e., SQL statements) generate access pat-
terns of the storage engine and can be broken down into
the same basic operations. This mapping of complex
queries to basic operations is also common for perfor-
mance tuning of LSM tree-based storage engines [17].
Therefore, a workload can be expressed as a vector
w = (z0, z1, q, w)⊺ ≥ 0 describing the proportions of the
different kinds of queries. Clearly, z0 + z1 + q + w = 1 or
alternatively: w⊺e = 1 where e denotes a column vector
of ones of the same dimension as w.

Each type of query (non-empty lookups, empty
lookups, range lookups, and writes) has a different
cost, denoted as Z0(Φ), Z1(Φ), Q(Φ), W (Φ), as there
is a dependency between the cost of each type of
query and the design Φ. For ease of notation, we use
c(Φ) = (Z0(Φ), Z1(Φ), Q(Φ), W (Φ))⊺ to denote the vec-
tor of the costs of executing different types of queries.
Thus, given a specific configuration (Φ) and a workload
(w), the expected cost can be computed as:

C(w, Φ) = w⊺c(Φ) =z1 · Z0(Φ) + z0 · Z1(Φ)
+ q · Q(Φ) + w · W (Φ).

(2)

We present a summary of all of our notation in Table 1.

4 The Cost Model of LSM Trees

In this section, we provide a detailed cost model that
accurately captures the behavior of a wide collection of
LSM compaction strategies, including classical leveling
and tiering, as well as hybrid approaches. Following prior
work [26,58], we focus on the four types of operations
described earlier: point queries that return an empty
result, point queries that have a match, range queries,
and writes.

4.1 Model Basics

When modeling the read cost of LSM trees, a key quan-
tity to accurately capture is the amount of superfluous
I/Os that take place. Although Bloom filters are used to
minimize extra I/Os, they allow for a small fraction of
false positives. If the filter returns negative, the target
key does not exist in the run, and the lookup skips
over the assigned fence pointer saving a single random
I/O. If a filter returns positive, then the target key may
exist, so the lookup probes the run at a cost of one I/O.
Then, if the run contains the correct key the lookup
terminates. Otherwise, we have a false positive and the
lookup continues to probe the next run increasing the
number of I/Os. The false positive rate (ϵ) of a standard
Bloom filter that is designed to hold information over n

entries using a bit-array of size m is given by [82]:

ϵ = e− m
n ·ln(2)2

.

Note that the above equation assumes the use of an op-
timal number of hash functions in the Bloom filter [85].

Classically, LSM tree-based key-value stores use
the same number of bits-per-entry across all Bloom
filters. This means that a lookup probes on average
O

(
e−mfilt/N

)
of the runs, where mfilt is the overall

amount of main memory allocated to the filters. As
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Fig. 2: K-LSM provides a flexible way to describe dif-
ferent compaction behaviors. In this figure, assume the
buffer is the same size as a logical page; then each sorted
run is composed of multiple pages.

mfilt approaches 0 or infinity, the term O
(
e−mfilt/N

)
approaches 1 or 0 respectively. Here, we build on the
state-of-the-art Bloom filter allocation strategy proposed
in Monkey [26] that uses different false positive rates
for each level of the LSM tree to offer optimal memory
allocation; for a size ratio T , the false positive rate cor-
responding to the Bloom filter at the level i is given by

fi(T ) = T
T

T −1

T L(T )+1−i
· e− mfilt

N ln(2)2
. (3)

Additionally, false positive rates for all levels satisfy
0 ≤ fi(T ) ≤ 1. It should be further noted that Monkey
optimizes false positive rates at individual levels to min-
imize the worst-case average cost of empty point queries.
Non-empty point query costs, being significantly lower
than those of empty point queries, are not considered
during the optimization process.
LSM Tree Design & System Parameters. In Sec-
tion 3 we introduced the key design and system parame-
ters needed to model LSM tree performance. In addition
to those parameters, there are two more auxiliary and
derived parameters we use: the potential storage asym-
metry [64] in reads and writes (fa) and the expected
selectivity of range queries (SRQ).

4.2 Extending Classic LSM Compaction Policies

We now introduce a new variable Ki that denotes the
maximum number of files for a given level i. It captures
a unified design for both classical compaction policies

(i.e., tiering and leveling) by introducing a range of new
hybrid policies.
Maximum Files Per Level. Figure 2 displays the
basic structure of an LSM tree with Ki assigned for all
levels. We define Ki as the maximum number of sorted
immutable runs before a full-level compaction triggers,
essentially the capacity of runs per level. In a classic
tiering compaction policy, a single level of an LSM Tree
traditionally has a max of (T − 1) runs, each of size
mbuf

E · T (i−1) where i is the assigned level. A full-level
compaction triggers once the level receives T runs from
the level above, as a result, a level will have at most
(T − 1) runs. In our new design, each level still respects
the maximum entry capacity for an LSM tree, as each
run will have at most mbuf

E · T i−1

Ki
entries. Figure 2a

shows an example of a tree right before the compaction
occurs. Once the buffer is flushed, Level 1 will compact
all runs within the level and send a sorted run to Level
2, which subsequently sort-merges the received run with
the existing data. Then after four more buffer flushes,
Level 2 will have received another run and trigger a
compaction, creating a new Level 3.
Compaction Behavior. When Ki = T − 1 for level
i, the design is equivalent to a tiering policy, while for
Ki = 1, it is equivalent to a leveling policy. As incoming
sorted runs are compacted, we choose not to split runs,
rather, we only merge runs or logically move them from
one level to another. Therefore, for values in between
T − 1 and 1, we alternate when compacted runs from
the level above are merged or simply logically moved.
For example, Figure 2b shows a scenario for Ki = 2,
and T = 6. The first three runs from the level above
would be compacted to form a single run; the next 2
runs would merge to form a sorted run. In this instance,
each run would be of a different size, one holding the
equivalent of three compactions while the other holding
2. Otherwise, if Ki and T are set such that (Ki − 1)/T

is an integer, the size of each sorted run is equivalent.
The sixth flush from Level i − 1 triggers a full-level
compaction flushing to Level i + 1.

4.3 A General Cost Model

Using the above insights, we model the costs in terms
of the expected number of I/O operations required for
the fulfillment of the individual queries. We summarize
new notations introduced for the cost model in Table 2.
Expected Empty Point Query Cost (Z0). A point
query that returns an empty result will have visited all
sorted runs on every level and issue an I/O for every
false positive result amongst the Bloom filters. Therefore,
the expected number of I/Os per level depends on the
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Table 2: Additional model notation

Term Definition
Z0(Φ) Empty read cost w.r.t to a specific LSM configuration Φ
Z1(Φ) Non-empty read cost w.r.t to a specific LSM configuration Φ
Q(Φ) Range read cost w.r.t to a specific LSM configuration Φ
W (Φ) Write cost w.r.t to a specific LSM configuration Φ
L(T ) Number of levels to fill a tree with size ratio T

Nf (T ) Number of entries to fill a tree with size ratio T
Ki The maximum number of overlapping files for level i

fi(T ) Bloom filter false positive rate at Level i with size ratio T
fa Read/write Asymmetry ratio for storage device

fseq Cost of a sequential read w.r.t a random read
SRQ Range query selectivity

Bloom filter memory allocation at that level. Hence,
Equation (4) expresses Z0 in terms of the false positive
rates at each level as:

Z0(Φ) =
L(T )∑
i=1

Ki · fi(T ). (4)

For each level, there will be at most Ki runs, and each
run will have equal false positive rates.
Expected Non-empty Point Query Cost (Z).
There are two components to the expected non-empty
point query cost. First, we assume that the probability
of a point query finding a non-empty result in a level is
proportional to the size of the level. Thus, the probabil-
ity of such a query being satisfied on Level i by a unit
cost I/O operation is simply (T −1)·T i−1

Nf (T ) · mbuf
E , where

Nf (T ) denotes the number of entries in a full tree up
to L(T ) levels:

Nf (T ) =
L(T )∑
i=1

(T − 1) · T i−1 · mbuf

E
. (5)

Second, we assume that all levels preceding Level i will
trigger an I/O operation with a probability equivalent to
the false positive rates of the Bloom filters at those levels.
Similarly to empty point queries, the expected cost of
such failed I/Os on the preceding levels is

∑i−1
j=1 fj(T ).

Lastly, each level will contain at most Ki sorted runs, we
assume that on average the entry is found in the middle
run resulting in an additional (Ki−1)

2 · fi(T ) extra I/Os.
Thus, we can compute the non-empty point query cost
as an expectation over the entry being found at any of
the L(T ) levels of the tree as follows:

Z1(Φ) =
L(T )∑
i=1

(T − 1) · T i−1

Nf (T ) · mbuf

E

·
(

1 +
i−1∑
j=1

Kj · fj(T ) + Ki − 1
2 fi(T )

)
.

(6)

Flush

T−!
Ki

flushes per run
Level i

Level i − 1

Sorted Run

T − 1
Ki
⁄  − 1 1

Ki Runs

T − 1 Flushes

…

Fig. 3: The last flush of a sorted run participates in
1 merge as it eagerly merges into the sorted run. The
first flush will participate in all subsequent eager merges
from new flushes.

Range Queries Cost (Q). A range query will issue at
most one disk seek per run per level, or Ki disk seeks.
Each seek is then followed by a sequential scan. The
cumulative number of pages scanned over all runs is
SRQ · N

B , where SRQ is the average proportion of all
entries included in range lookups. After finding the first
valid page, range queries perform sequential I/Os for
subsequent pages rather than a random I/O. Therefore,
we add a scaling factor fseq that represents the cost of a
sequential I/O with respect to one random I/O. Hence,
the overall range lookup cost Q in terms of logical pages
reads is as follows:

Q(Φ) = fseq · SRQ · N

B
+

L(T )∑
i=1

Ki. (7)

Write Cost (W ). We model worst-case writing cost
assuming that the vast majority of incoming entries do
not overlap. This implies most entries will propagate
through all levels of the LSM tree. Therefore, we calcu-
late the expected number of I/Os by first estimating the
average number of merge operations a single write par-
ticipates in at Level i, and summing over all levels. We
start by deriving the total number of merges that occur
on Level i. note that Level i will receive at most T − 1
flushes from Level i − 1 before a full level compaction
is triggered. Additionally, a run at Level i needs T −1

Ki

flushes from Level i − 1 to reach its maximum size; we
will refer to this as the flush capacity. Figure 3 shows
the number of flushes and flush capacity for Level i.

Analyzing a single sorted run at Level i, we observe
that the last flush will only participate in a single eager
compaction as the sorted run will reach its flush capacity
at that point. The second to last flush participates in 2
merges, the third to last in 3 merges, and the first flush
in T −1

Ki
− 1 merges as new flushes are eagerly compacted

into the sorted run. Therefore, the total count of merge
operations for Ki sorted runs on Level i is

Ki ·

T −1
Ki

−1∑
j=1

j = (T − 1) · (T − 1 − Ki)
2Ki

. (8)
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Given the total merges for Level i, we can now calculate
the average number of merges a single write participates
in. First, we divide the total merges at Level i from
Equation (8) by the number of flushes from Level i − 1
(T − 1) to receive an average merge count of (T −1−Ki)

2Ki
.

Second, to account for the final full-level merge that
occurs on the T th flush, we add 1 additional merge.
Therefore, the average number of merges, and subse-
quently I/Os, a single write participates in at Level i is
simply T −1+Ki

2Ki

To calculate the cost of a single insert, we need to
divide the average number of merges every level by the
number of entries per page, B. Additionally, as every
compaction operation reads data at Level i − 1 and
writes to Level i, we model the potential asymmetry
between reads and writes on the underlying storage
device3 using fa. For example, a device for which a
write operation is twice as expensive as a read operation
has fa = 2. When flushing the buffer, writes perform
sequential I/Os as opposed to random I/Os, hence, we
add fseq term to account for the cost of different I/O
types. Summing the average I/Os per level for all levels,
the total I/O cost is captured by:

W (Φ) = fseq · 1 + fa

B
·

L(T )∑
i=1

T − 1 + Ki

2Ki
. (9)

Total Expected Cost. The total expected operation
cost, C(w, Φ), is computed by weighing the empty point
lookup cost Z0(Φ) from Equation (4), the non-empty
point lookup cost Z(Φ) from Equation (6), the range
lookup cost Q(Φ) from Equation (7), and the write
cost W (Φ) from Equation (9) by their proportion in
the workload represented by the terms z0, z, q and w

respectively (note that z0 + z1 + q + w = 1).

4.4 Expressing LSM Data Layout Variants

With the introduction of Ki, we can use our cost
model to effectively describe the behavior of other com-
mon LSM designs. For example, for a classic leveling
compaction policy we set ∀i, Ki = 1. This results in
each level eagerly merging incoming compacted runs
into a single run, which is equivalent to leveling. Ad-
ditionally, our cost model can easily describe other
flexible LSM compaction behavior. If we restrict all
capacities before the last level to be equivalent (i.e.,
K1 = K2 = ... = KL−1 where L is the last level),
our cost model expresses the Fluid LSM design as

3 Flash-based SSDs typically exhibit a read/write asymmetry,
where writes are 2× to 10× more expensive than reads [64].

described in Dostoevsky [28]. With KL = 1 and all
K1 = K2 = ... = KL−1 = T − 1, we have an equivalent
cost model for Lazy Leveling. However, our proposed
K-LSM is the most flexible, as each level has an indepen-
dent limit on the number of runs. Table 3 summarizes
how K-LSM describes other common LSM variations:

Table 3: Variations of LSM data layouts

LSM layout Setting

Fluid LSM [28] K1 = ... = KL−1
Lazy Leveling [28,29] KL = 1, Ki = T − 1, ∀i ̸= L
1-Leveling [73] K1 = T − 1, Ki = 1, ∀i ̸= 1
Tiering [48] Ki = T − 1, ∀i
Leveling [61] Ki = 1, ∀i
K-LSM (§4) All Ki ∈ Z

5 The Nominal Tuning Problem

In this section, we describe the classic tuning problem
which involves finding the best configuration suited for
a given workload without uncertainty. We examine the
problem definition, algorithms to efficiently compute op-
timal configurations, and compare configurations across
various designs of LSM trees.

5.1 Nominal Tuning Problem Definition

Traditionally, designers focus on finding the configu-
ration Φ∗ that minimizes the total cost C(w, Φ∗), for
a given fixed workload w. We call this problem the
Nominal Tuning problem, which is defined as follows:

Problem 1 (Nominal Tuning) Given a fixed work-
load w, find the LSM tree configuration ΦN such that

ΦN = arg min
Φ

C(w, Φ). (10)

The problem described above captures the classic tuning
paradigm of finding a system configuration that mini-
mizes a cost model (describing I/O or latency) given a
specific static workload and system environment. There-
fore, each LSM design described in Table 3 has a different
Nominal Tuning problem based on the form of the
cost function. Prior tuning approaches either individu-
ally solve the Nominal Tuning problem solely for LSM
data layouts [28,53] (e.g., tiering or leveling) or memory
allocation [26], but not simultaneously for both.



Towards Flexibility and Robustness of LSM Trees 9

Level
Tier
1-Level

Lazy Level

Dosto
evsky

FluidLSM
K-LSM

0

1

2

Mixed Read-Write Workload
w7: (49%, 1%, 1%, 49%)

Level
Tier
1-Level

Lazy Level

Dosto
evsky

FluidLSM
K-LSM

0

1

2

Read-Heavy Workload
w11: (33%, 33%, 33%, 1%)

Av
g 

I/
O

 p
er

 Q
ue

ry
N

or
m

al
iz

ed
 to

 K
-L

SM

Fig. 4: Throughput of different designs for fixed work-
loads. Hatched-cyan indicates the best performance.
Note Dostoevsky uses the Fluid LSM design, but with
fixed memory [28].

5.2 Solving a Nominal Tuning Problem

To solve the Nominal Tuning problem, we utilize
an off-the-shelf numerical solver. We opt to use the
Sequential Least Square Quadratic Solver (SLSQP) im-
plemented in Python and packaged under the SciPy
library [84]. When choosing a data layout to optimize,
we reduce the cost model to express the appropriate
LSM design.
Relaxing Integer Values. Certain decision variables
such as T (size ratio) pose an issue as they are required
to be integers as LSM trees cannot implement fractional
size ratios. To keep the problem feasible, we relax the
integer constraint for such decision variables and opt to
take the ceiling of any feasible solution before deploying
the tuning. In practice, this approach works well and
leads to high-performance configurations.

5.3 Comparison of LSM Strategies

In this section, we explore the optimal configurations
for different designs described in Table 3 by solving the
Nominal Tuning problem for each respective LSM
design variation. We compare average I/Os per query
to analyze the performances of different flexible designs.
Experiment Setup. We adopt the following setting
for system parameters: the database initially holds 10
billion entries, each of size 1 KB; a memory budget of
10 bits per element, or 10 GB in total divided among
Bloom filter and write buffer; and a page size of 4 KB.
It should be noted that the original Dostoevsky strategy
uses Fluid LSM as an LSM design with fixed memory
allocation, and only optimizes for the maximum number
of runs for the upper levels, the lowest level, and size
ratio while fixing memory. Therefore, while evaluating
Dostoevsky we fix mfilt to 10 bits per entry and mbuf to
2 MB as in [28]. For all other design variations, we solve

a Nominal Tuning problem that optimizes memory
and design while fixing other memory allocations such
as fence pointers and the random access buffer.
Flexible Performance. Figure 4 shows the average
I/O performance of various tuning configurations nor-
malized to K-LSM design across different workloads.
We experiment with a mixed read-write (w7) and a
read-heavy (w11) workload from the uncertainty bench-
mark, which is presented in detail in Section 7. Note
that w7 would traditionally lead a designer to focus
on tiering as writes make up a large portion of the
workload, while w11 would suggest a leveling policy
would be best. When solving for more flexible designs—
in this instance K-LSM and Fluid LSM—we observe
that the optimizer always produces the best tunings.
Because w11 is a read-heavy distribution, the optimal
configuration has a leveling policy, which is reinforced
by observing that the optimal K-LSM and Fluid LSM
designs chosen are equivalent leveling. For the balanced
read-write workload w7, we see that flexible designs
outperform traditional designs as the optimizer finely
tunes the capacity per level to accommodate both reads
and writes.

6 The Robust Tuning Problem

In this section, we introduce the Robust Tuning prob-
lem, a variation of the Nominal Tuning problem that
takes into consideration uncertainty in the workload.
We give a precise definition of workload uncertainty and
show how to compute high-performance configurations
that minimize the expected cost of operation in the
presence of this uncertainty.

6.1 Robust Problem Definition

The Nominal Tuning problem assumes perfect infor-
mation about the workload before deploying the system.
For example, we may assume that the input vector w
represents the workload for which we optimize, while
in practice, w is simply an estimate of what an ob-
served workload may look like. Hence, the configuration
obtained by solving Problem 1 may result in variable
performance if the observed workload upon deployment
varies greatly from the expected workload.

We capture this uncertainty by reformulating Prob-
lem 1 to take into account variability observed in the
input workload. Given an expected workload w, we in-
troduce the notion of the uncertainty region of w, which
we denote by Uw.
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Fig. 5: Workload uncertainty neighborhoods (Uw), de-
noted by the green shaded region, for two different
expected workloads (w) and ρ.

We can define the robust version of Problem 1, under
the assumption that there is uncertainty in the input
workload as follows:

Problem 2 (Robust Tuning) Given w and uncer-
tainty region Uw find the tuning configuration of the
LSM tree ΦR such that

ΦR = arg min
Φ

C(ŵ, Φ)

s.t., ŵ ∈ Uw. (11)

Note that the above problem definition intuitively states
the following: it recognizes that the input workload w
will not be observed exactly, and it assumes that any
workload in Uw is possible. Then, it searches for the
configuration Φw that is best for the worst-case scenario
among all those in Uw.

The challenge in solving Robust Tuning is that one
needs to explore all the workloads in the uncertainty
region to solve the problem. In the next section, we
show that this is not necessary. In fact, by appropriately
rewriting the problem definition we show that we can
solve Problem 2 in polynomial time.

6.2 Solving The Robust Tuning Problem

In this section, we discuss our solutions to the Robust
Tuning problem. On a high level, the solution strategy
is the following: first, we express the objective of the
problem (as expressed in Equation (11)) as a standard
continuous optimization problem. We then take the
dual of this problem and use existing results in robust
optimization to show: (i) the duality gap between the
primal and the dual is zero, and (ii) the dual problem is
solvable in polynomial time. Thus, the dual solution can
be translated into the optimal solution for the primal,
i.e., the original Robust Tuning problem. The specifics
of the methodology are described below:

Defining the Uncertainty Region Uw. Recall that w
is a probability vector, i.e., w⊺e = 1. Thus, in order to
define the uncertainty region Uw, we use the Kullback-
Leibler (KL) divergence function [52] defined as follows:

Definition 1 The KL-divergence distance between two
probability distributions p⃗ = (p1, · · · , pm)⊺ ≥ 0 and
q⃗ = (q1, · · · , qm)⊺ ≥ 0 is defined as,

IKL(p⃗, q⃗) =
m∑

i=1
pi log

(
pi

qi

)
.

Since our workloads are represented as probability distri-
butions, the KL-divergence is the most natural choice of
distance between them. One could use Lp norms instead.
However, calculating the Lp norm between workloads
requires a summation of the pth power of differences in
probabilities, which are extremely small values, and are
not meaningful in this setting.

Using the KL-divergence we can now formalize the
definition of the uncertainty region around an expected
workload w as follows,

Uρ
w = {ŵ ∈ R4 | ŵ ≥ 0, ŵ⊺e = 1, IKL(ŵ, w) ≤ ρ}. (12)

Here, ρ determines the maximum KL-divergence that
is allowed between any workload ŵ in the uncertainty
region and the input expected workload w. Note that
the definition of the uncertainty region takes as input
the parameter ρ, which intuitively defines the neighbor-
hood around the expected workload. Figure 5 shows
an example of the uncertainty region for ρ = 0.2 and
expected workload w0 = (25%, 25%, 25%, 25%), and for
ρ = 2 and expected workload w1 = (97%, 1%, 1%, 1%).
For this visualization, we combined the two types of read
queries (empty and non-empty) onto one axis. Note that
the shape of the uncertainty region is defined by the
expected workload, the value of ρ, and the fact that all
workloads are restricted to be probability distributions.
In terms of notation, ρ is required for defining the un-
certainty region Uρ

w. However, we drop the superscript
notation unless required for context.
Rewriting of the ROBUST TUNING Problem
(Primal). Using the above definition of the workload un-
certainty region Uρ

w, we are now ready to proceed to the
solution of the Robust Tuning problem. For a given
ρ, the problem definition, as captured by Equation (11),
can be rewritten as follows:

min
Φ

max
ŵ∈Uρ

w
ŵ⊺c(Φ). (13)

This rewrite captures the intuition that the optimiza-
tion is done over the worst-case scenario across all the
workloads in the uncertainty region Uw. Equation (13)
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can be rewritten by introducing an additional variable
β ∈ R, as follows:

min
β,Φ

β

s.t., ŵ⊺c(Φ) ≤ β ∀ŵ ∈ Uw. (14)

This reformulation allows us to remove the min max
term in the objective from Equation (13). The constraint
in Equation (14) can be equivalently expressed as,

β ≥ max
ŵ

{
ŵ⊺c(Φ)|ŵ ∈ Uw

}
= max

ŵ≥0

{
ŵ⊺c(Φ)

∣∣∣∣ŵ⊺e = 1,

m∑
i=1

ŵi log
(

ŵi

wi

)
≤ ρ

}
.

Finally, the Lagrange function for the optimization on
the right-hand side of the above equation is:

L(ŵ, λ, η) = ŵ⊺c(Φ)+ρλ−λ

m∑
i=1

ŵi log
(

ŵi

wi

)
+η(1−ŵ⊺e),

where λ and η are the Lagrangian variables.
Formulating the Dual Problem. We can now express
the dual objective as,

g(λ, η) = max
ŵ≥0

L(ŵ, λ, η), (15)

which we need to minimize.
Now we borrow the following result from [10],

Lemma 1 ([10]) A configuration Φ is the optimal so-
lution to the Robust Tuning problem if and only if
minη,λ≥0 g(λ, η) ≤ β where the minimum is attained for
some value of λ ≥ 0.

In other words, minimizing the dual objective g(λ, η) –
as expressed in Equation (15) – will lead to the optimal
solution for the Robust Tuning problem.
Solving the Dual Optimization Problem Opti-
mally. Formulating the dual problem and using the
results of Ben-Tal et al. [10], we have shown that the
dual solution leads to the optimal solution for the Ro-
bust Tuning problem. Moreover, we can obtain the
optimal solution to the original Robust Tuning prob-
lem in polynomial time, a consequence of the tractability
of the dual objective.

To solve the dual problem, we first simplify the dual
objective g(λ, η) so that it takes the following form:

g(λ, η) = η + ρλ + λ

k∑
i=1

wiϕ
∗
KL

(
ci(Φ) − η

λ

)
. (16)

In Equation (16), ϕ∗
KL(.) denotes the conjugate of KL-

divergence function and ci corresponds to the i-th di-
mension of the cost vector c(Φ) as defined in Section 3 –
clearly in this case k = 4 as we have 4 types of queries
in our workload. Results of Ben-Tal et al. [10] show

that minimizing the dual function as described in Equa-
tion (16) is a convex optimization problem, and it can
be solved optimally in polynomial time if and only if
the cost function c(Φ) is convex in all its dimensions.

In our case, the cost function for the range queries
is not convex w.r.t. size ratio T for the tiering policy.
However, on account of its smooth non-decreasing form,
we are still able to find the global minimum solution for

min
Φ,λ≥0,η

{
η + ρλ + λ

m∑
i=1

wiϕ
∗
KL

(
ci(Φ) − η

λ

)}
. (17)

This minimization problem can be solved using the Se-
quential Least Squares Quadratic Programming solver
(SLSQP) included in the popular Python optimization
library SciPy [84]. Solving this problem outputs the
values of the Lagrangian variables λ and η and most
importantly the configuration Φ that optimizes the ob-
jective of the Robust Tuning problem – for input ρ.
In terms of running time, the SLSQP solver outputs
a robust tuning configuration for a given input in less
than a second.
Finding a Value for ρ. Since ρ is a robust tuning
parameter, we also provide a few heuristics for setting
it. In the presence of historically observed workloads,
a DBA may calculate ρ using the following definition:
that is, ρ is set to be the largest KL-divergence between
any observed workload and the corresponding workload
average as described in Algorithm 1. If the DBA does
not have information about past workloads, they may
provide ranges for each query type; then, can sample
workloads within those ranges and then calculate ρ

using the definition above to find an appropriate value.
DBAs may instead provide two workloads, one that
is expected during a normal observation period, and
another off-period or unlikely workload. In this case,
The KL-divergence between these two workloads can be
used as ρ.

Algorithm 1: Calculating ρ from historical
workloads

Input: Set of historical workloads
W = {w1, w2, ..., wn}

1 w̄← 1
n ·

∑
wi∈W

wi

2 return arg max
wi∈W

IKL(wi, w̄)

7 Uncertainty Benchmark

In this section, we describe the uncertainty benchmark
that we use to evaluate the Endure, both analytically
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using the cost models, and empirically using RocksDB.
It consists of two primary components: (1) Expected
workloads and, (2) Benchmark set of sampled workloads,
described below.
Expected Workloads. We create robust tuning con-
figurations for 15 expected workloads encompassing dif-
ferent proportions of query types. We catalog them into
uniform, unimodal, bimodal, and trimodal categories
based on the dominant query types. While this break-
down of dominant queries is similar to benchmarks such
as YCSB, we provide a more comprehensive coverage of
potential workloads. A minimum of 1% of each query
type is always included in every expected workload to
ensure a finite KL-divergence. A complete list of all
expected workloads is in Table 4.

Table 4: Tested expected workloads.

Index (z0, z1, q, w) Type
0 25% 25% 25% 25% Uniform

1 97% 1% 1% 1% Unimodal
2 1% 97% 1% 1%
3 1% 1% 97% 1%
4 1% 1% 1% 97%

5 49% 49% 1% 1% Bimodal
6 49% 1% 49% 1%
7 49% 1% 1% 49%
8 1% 49% 49% 1%
9 1% 49% 1% 49%
10 1% 1% 49% 49%

11 33% 33% 33% 1% Trimodal
12 33% 33% 1% 33%
13 33% 1% 33% 33%
14 1% 33% 33% 33%

Benchmark Set of Sampled Workloads. We use
the benchmark set of 10K workloads B as a test dataset
over which to evaluate the tuning configurations. These
configurations are generated as follows: first, we inde-
pendently sample the number of queries corresponding
to each query type uniformly at random from a range
(0, 10000) to obtain a 4-tuple of query counts. Next, we
divide the individual query counts by the total number
of queries in the tuple to obtain a random workload
that is added to the benchmark set. We use the actual
query counts during the system experimentation where
we execute individual queries on the database.

This type of workload breakdown can commonly be
seen in LSM trees as shown in a survey of workloads
in Facebook’s pipeline [17]. The authors report that
ZippyDB, a distributed KV store that uses RocksDB,
experiences workloads with 78% gets, 19% writes, and

3% range reads. This breakdown is similar to workload
11, and the exact workload is in the benchmark set B.

Note that while the same B is used to evaluate dif-
ferent tunings, it represents a different distribution of
KL-divergences for the corresponding expected workload
associated with each tuning. In the next two sections,
we use our uncertainty benchmark to demonstrate that
tuning with Endure achieves significant performance
improvement using both a model-based analysis (Sec-
tion 8), and an experimental study (Section 9).

8 Model-Based Evaluation

We now present our detailed model-based study of En-
dure that uses more than 10000 different noisy work-
loads for all 15 expected workloads, showing perfor-
mance benefit of up to 5×. For brevity, when we provide
a nominal tuning we are referring to the solution for the
Nominal Tuning problem with tiering and leveling
as the two design choices. Similarly, we use Endure
and the robust tuning interchangeably to refer to the
solution of the Robust Tuning problem which chooses
between tiering and leveling. We show that Endure
perfectly matches the nominal tuning when there is no
uncertainty (i.e., when the observed workload always
matches the expected one) and we pass this information
to the robust tuner. Further, we provide recommenda-
tions on how to select uncertainty parameters.

8.1 Evaluation Metrics

In this section, we provide definitions of metrics used
to evaluate the performance of tunings.
Normalized Delta Throughput (∆). Defining
throughput as the reciprocal of the cost of executing a
workload, we measure the normalized delta throughput
of a configuration Φ2 w.r.t. another configuration Φ1 for
a given workload w as follows,

∆w(Φ1, Φ2) =
1/C(w,Φ2) − 1/C(w,Φ1)

1/C(w,Φ1)
.

∆w(Φ1, Φ2) > 0 implies that Φ2 outperforms Φ1
when executing a workload w and vice versa when
∆w(Φ1, Φ2) < 0.
Throughput Range (Θ). While normalized delta
throughput compares two different tunings, we use the
throughput range to evaluate an individual tuning Φ

w.r.t. the benchmark set B as follows,

ΘB(Φ) = max
w0,w1∈B

(
1

C(w0, Φ) − 1
C(w1, Φ)

)
.
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Fig. 6: Average delta throughput ∆ŵ(ΦN , ΦR) for each
category of expected workload.

ΘB(Φ) intuitively captures the best and the worst-case
outcomes of the tuning Φ. A smaller value of this metric
implies higher consistency in performance.

8.2 Experiment Design

To evaluate the performance of our proposed robust
tuning approach, we design a large-scale experiment
comparing different tunings over the sampled workloads
in B using the analytical cost model. For each of the
expected workloads in Table 4, we obtain a single nomi-
nal tuning configuration (ΦN ) by solving the Nominal
Tuning problem. For 15 different values of ρ in the range
(0.0, 4.0) with a step size of 0.25, we obtain a set of ro-
bust tuning configurations (ΦR) by solving the Robust
Tuning problem. Finally, we individually compare each
of the robust tunings with the nominal over the 10,000
workloads in B to obtain over 2 million comparisons.
While computing the costs, we assume that the database
contains 10 billion entries each of size 1 KB. The analy-
sis presented in the following sections assumes a total
available memory of 10 GB. For brevity, we present rep-
resentative results corresponding to individual expected
workloads and specific system parameters. We primarily
focus on two workloads from Table 4, w7 which is a
mixed read-write workload, and w11, which is a read-
heavy workload. However, we exhaustively confirmed
that changing these parameters does not qualitatively
affect the outcomes of our experiment.

8.3 Results

Here, we present an analysis of the comparisons between
the robust and the nominal tuning configurations. Us-
ing an off-the-shelf global minimizer from the popular
Python optimization library SciPy [84], we obtain both
nominal and robust tunings with the runtime for the
above experiment being less than 10 minutes.

Comparison of Tunings. First, we address the ques-
tion – is it beneficial to adopt robust tunings relative to
the nominal tunings? Intuitively, it should be clear that
the performance of nominally tuned databases would
degrade when the workloads being executed on the
database are significantly different from the expected
workloads used for tuning. In Figure 6, we present perfor-
mance comparisons between the robust and the nominal
tunings for different values of uncertainty parameter
ρ. We observe that robust tunings provide substantial
benefit in terms of normalized delta throughput for uni-
modal, bimodal, and trimodal workloads. The normalized
delta throughput ∆ŵ(ΦN , ΦR) shows over 95% improve-
ment on average over all ŵ ∈ B for robust tunings
with ρ ≥ 0.5, when the expected workload used during
tuning belongs to one of these categories. For uniform
expected workload, we observe that the nominal tuning
outperforms the robust tuning by a modest 5%.

Intuitively, unbalanced workloads result in overfit
nominal tunings. Hence, even small variations in the
observed workload can lead to significant degradation in
the throughput of such nominally tuned databases. On
the other hand, robust tunings by their very nature take
into account such variations and comprehensively out-
perform the nominal tunings. In the case of the uniform
expected workload w0, a low value of ρ covers a larger
area of possible workloads than that same value would in
a different workload as evident in Figure 5. In this case,
when tuned for high values of ρ, the robust tunings are
unrealistically pessimistic and lose performance relative
to the nominal tuning.
Impact of Tuning Parameter ρ. Next, we address
the question – how does the uncertainty tuning param-
eter ρ impact the performance of the robust tunings?
In Figure 7, we take a deep dive into the performance
of robust tunings for an individual expected workload
for different values of ρ. We observe that the robust
tunings for ρ = 0 i.e., zero uncertainty, are very close
to the nominal tunings. As the value of ρ increases, its
performance advantage over the nominal tuning for the
observed workloads with higher KL-divergence w.r.t. ex-
pected workload increases. Furthermore, the robustness
of such configurations have logically sound explanations.
The expected workload in Figure 7 consists of just 1%
writes. Hence, for low values of ρ, the robust tuning has
a higher size ratio leading to shallower LSM trees to
achieve good read performance. For higher values of ρ,
the robust tunings anticipate an increasing percentage
of write queries and hence limit the size ratio to achieve
higher throughput.

In Figure 8, we show the impact of tuning parame-
ter ρ on the throughput range. In Figure 8a we plot a
histogram of the nominal and robust throughputs for
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workload w11. As the value of ρ increases, the interval
size between the lowest and the highest throughputs for
the robust tunings consistently decreases. We provide
further evidence of this phenomenon in Figure 8b, by
plotting the decreasing throughput range ΘB(ΦR) av-
eraged across all the expected workloads. Thus, robust
tunings not only provide a higher average throughput for
all ŵ ∈ B, but they have a more consistent performance
(lower variance) compared to the nominal tunings.

Choice of ρ. Now, we address the question – What
is the appropriate choice for the value of uncertainty
parameter ρ? In Figure 9, we explore the relationship be-
tween ρ and the KL-divergence IKL(ŵ, w) for ŵ ∈ B, by
making a contour plot of the corresponding normalized
delta throughput ∆ŵ(ΦN , ΦR). We confirm our intu-
ition that nominal tunings compare favorably with our
proposed robust tunings only in two scenarios: (1) when
the observed workloads are extremely similar to the
expected workload (close to zero observed uncertainty),
and (2) when the robust tunings assume extremely low
uncertainty with ρ < 0.2 while the observed variation is
higher. Based on this evidence, we propose the following
rule of thumb: the maximum KL-divergence between
any two pairs of observed workloads is a reasonable
value of ρ in practice.
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Fig. 9: Effect on delta throughputs ∆ŵ(ΦN , ΦR) on
selection of ρ vs IKL(ŵ, w).

Sensitivity Analysis w.r.t. Entry Size. Lastly, we
take a look at the expected tuning performance w.r.t
to system settings. Figure 10 shows average I/O, or sin-
gle logical page accesses, per query over different entry
sizes with the standard deviation highlighted around
each line. Each data point corresponds to the average
I/O per query for the optimal tuning for all workloads
ŵ ∈ B. For our mixed read-write workload, we see that
the Endure always performs better than the nominal
tuning regardless of the entry size. When we tune with a
read-heavy workload as the expected input, we observe
that for lower entry sizes the nominal tuning produces
a better tuning, however, at larger entry sizes Endure
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Fig. 10: Tuning performance sensitivity to entry size.

outperforms its nominal counterpart. Because the total
number of entries is fixed, lower entry sizes cause the
physical size of the database to be relatively small w.r.t.
to the available memory budget. Hence, we observe the
allocation between mfilt and mbuf does not play a major
role in performance as the tree can be made relatively
shallow. However, as the size of the database starts
to increase and the memory budget becomes a smaller
fraction of the database size, we observe the allocation
between memory plays a larger role. This implies proper
robust tunings play a larger role in constrained environ-
ments, where the available memory is a small fraction
of the total database size.

9 System-Based Evaluation

In this section, we deploy Endure as the tuner of the
state-of-the-art LSM-based engine RocksDB, and we
show that RocksDB achieves up to 90% lower workload
latency in the presence of uncertainty. We further show
that the tuning cost is negligible, and the effectiveness
of Endure is not affected by data size.

9.1 Experimental Setup & Measurements

Our server is configured with two Intel Xeon Gold
6230 processors, 384 GB of main memory, a 1 TB Dell
P4510 NVMe drive, CentOS 7.9.2009, and a default page
size of 4 KB. We use Facebook’s RocksDB, a popular
LSM tree-based storage system, to evaluate our ap-
proach [32]. While RocksDB provides implementations
of leveling and tiering policies, the system implements
micro-optimizations not common across all LSM tree-
based storage engines. Therefore, we use RocksDB’s
event hooks to implement both classic leveling and
tiering policies to benchmark the common compaction
strategies. For default RocksDB comparisons, we set a
custom policy hook to match the default compaction
policy of leveling. Additionally, RocksDB does not tog-
gle on Bloom filters by default. In the interest of fair

comparison, we add Bloom filters with the bits per ele-
ment set to 10. Following the Monkey memory allocation
scheme [26], we allocate different bits per element for
Bloom filters per level. We note that turning off direct
I/O improves read performance for any tuning deployed
to RocksDB. However, to obtain an accurate count of
block accesses we instead enable direct I/Os for both
queries and compaction and disable the block cache.
To obtain detailed insights about accesses, we present
our findings with direct I/Os, however, our qualitative
results remain unchanged with direct I/Os turned off.
Lastly, portions of memory reserved for the fence pointer
and max read buffer are fixed to their default values
before performing any tuning for buffer size and Bloom
filter memory.
Endure’s Pipeline. Figure 11 shows the workflow used
for Endure and the following experiments. A workload
descriptor (expected workload and uncertainty value ρ)
is provided to Endure to create an uncertainty neigh-
borhood centered around an expected workload. This
description of workload uncertainty is then incorporated
into the solver. In combination with the cost model,
which uses the workload and system parameters as in-
puts, Endure outputs an expected performance profile
and a robust tuning over various workloads in the uncer-
tainty neighborhood. Endure then deploys the robust
tuning on a RocksDB instance where we execute work-
loads to measure performance.
Empirical Measurements. We use the internal
RocksDB statistics module to measure the number of
logical block accesses during reads, bytes flushed dur-
ing writes, and bytes read and written in compactions.
The number of logical blocks accessed during writes is
calculated by dividing the number of bytes reported by
the default page size. To estimate the amortized cost of
writes, we compute the I/Os from compactions across
all workloads of a session and redistribute them across
write queries. Our approach of measuring average I/Os
per query allows us to compare the effects of different
tuning configurations, while simultaneously minimizing
the effects of extraneous factors on performance.

9.2 Experiment Design

To evaluate the performance of our proposed robust tun-
ing approach, we create multiple instances of RocksDB
using different tunings and empirically measure their
performance by executing workloads from the uncer-
tainty benchmark B. To obtain consistent performance
metrics, each instantiation of the database is initialized
with the same 10 million unique 1 KB key-value pairs.
Each key-value entry has a 16-bit uniformly at random
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Fig. 11: (1) Workload information is provided to En-
dure, establishing an uncertainty neighborhood cen-
tered on the expected workload. (2) This description of
workload uncertainty is integrated into the solver. (3)
The cost model receives both the workload and system
parameter details. (4) Using the robust tuning from the
solver and the cost model, an expected performance pro-
file is generated. (5) The robust tuning is then deployed
onto RocksDB.

sampled key, with the remaining bits being allocated to
a randomly generated value.

While evaluating the performance of the database,
we sample a sequence of workloads from the benchmark
set B. Every sampled workload is executed throughout
200,000 queries to measure steady-state performance.
This observation period is sufficient to capture spikes
in performance and background compactions allowing
us to record accurate performance numbers. We group
sets of workloads into sequences and catalog them into
one of six categories — expected, empty read, non-empty
read, read, range, and write — based on the dominant
query type. The expected session contains workloads
with a KL-divergence less than 0.2 w.r.t. the expected
workload used for tuning. For all other sessions, the
dominant query type encompasses at least 80% of the
total queries while the remaining queries may belong
to any of the remaining types. When generating keys
of the queries to run on the database, we ensure that
non-empty point reads will query a key that exists, while
empty point reads will query a key that is not present
in the database but is sampled from the same domain.
All range queries are generated with minimal selectivity
SRQ to act as short-range queries, which on average
read zero to two pages per level. Write queries consist
of randomly generated keys that are distinct from the
existing keys in the database. Similarly to Section 8, we
present representative findings for an expected mixed
read-write workload (w7) and an expected read-heavy
workload (w11).

9.3 Experimental Results

In this section, we replicate key insights from Section 8,
evaluate system performance, and show that Endure
scales with database size. We present detailed results for
expected workloads w7 and w11. Table 5 summarizes
the normalized delta throughputs ∆w(ΦN , ΦR) for all
expected workload from B.
Cost of Tuning. We first solve for either the nominal
or the robust tuning for every experiment. We note
that solving either tuning problem takes less than 10ms,
which is negligible w.r.t. workload execution time.
Read Performance. We begin by examining the sys-
tem performance and verifying that the model-predicted
I/O and the system-measured I/O match when consid-
ering read queries in Figures 12 and 13. In both figures,
we include the model-predicted I/Os per query (top),
I/Os per query measured on the system (middle), and
the system latency (bottom) for nominal, robust, and
default configurations across different read sessions. Ad-
ditionally, the total throughput numbers in queries per
second are reported at the end of the system latency
graph. The empirical measurements confirm that the
predicted performance benefits from the model translate
to similar performance benefits in practice. Note that
the discrepancy observed between the relative perfor-
mance between the nominal and the robust tunings in
the presence of range queries (session 2 in Figure 12)
is due to the fence pointers in RocksDB. The analyti-
cal model does not account for fence pointers allowing
the system to completely skip a run, which may reduce
the measured I/Os for short-range queries compared
to the predicted I/Os. Lastly, we consider the default
configuration as another tuning of RocksDB that does
not take into account workload information. Therefore,
in certain cases such as Figure 12, it may outperform
other configurations. This can be explained by the fact
that the default configuration includes a larger reserve
of memory for the Bloom filter, thereby allowing it to
outperform the configurations that expect writes in the
executed workload. However, in other cases such as Fig-
ure 13, we see a large performance dropoff as both the
nominal and robust configurations expect a high amount
of reads and therefore tune their size ratios accordingly.
Write Performance. In the presence of writes in Fig-
ure 15, the model is still predicting the disk accesses
successfully and Endure leads to significant perfor-
mance benefits. Note that now the structure of the LSM
tree is continually changing across all sessions due to
the compactions caused by write queries. For example,
in Figure 15 the dip in measured I/Os and latency in
the range-query session are the result of empty levels
being created via compactions triggered from preceding
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Fig. 12: System and model performance for robust and nominal tunings in a read-only observed query sequence.
Both tunings expected a mixed read-write workload. The tuning parameter ρ (input uncertainty) matches the
observed value of IKL(ŵ, w7) (observed uncertainty). Each session contains the label and average workload.
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Fig. 13: Read-only sequence where the observed workloads ŵ is close to the expected, hence ρ and IKL(ŵ, w11)
deviate. Both tunings expected a read-heavy workload.

workloads. Additionally, writes may appear instanta-
neous w.r.t. system latency as seen in Figure 14 due to
RocksDB assigning compactions to background threads.
We observe that the default configuration starts to de-
grade in performance significantly as more writes are
issued to the database. Figure 16 shows the breakdown
across each operation type. As the database experiences
more writes, the performance for the default configu-
ration drops off, while both the nominal tuning and
robust configurations expect writes and experience a
performance improvement. From the write session of
Figure 15, we observe that the nominal tuning suffers
from high latency and I/O cost. This is due to the large

size ratio T that creates a shallow tree with huge levels,
causing long stalls during compactions. Compare this
to the robust tuning: the smaller size ratio creates a
tree with more stable performance for both I/Os per
query and query latency, leading to a higher overall
throughput. Overall, we observe that the robust tuning
reduces I/O and latency by up to 90%. Figures 12–15
confirm that our analytical model accurately captures
the relative performance of different tunings.

Robust Outperforms Nominal for Properly Se-
lected ρ. In the model evaluation (Figure 9), we showed
that robust tuning outperforms the nominal tuning in
the presence of uncertainty for tuning parameter ρ ap-
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Fig. 14: Sequence where ρ and IKL(ŵ, w) closely match. Both tunings expected a write-heavy workload. Performance
fluctuates with writes as it modifies the tree.
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Fig. 15: Sequence when ρ and IKL(ŵ, w11) closely match. Both tunings expected a read-heavy workload. System
I/O and latency show reductions of up to 90%.

proximately greater than 0.2. This is further supported
by all the system experiments described. Specifically, Fig-
ures 12 and 15 show instances where the KL-divergence
of the observed workload averaged across all the ses-
sions w.r.t. the expected workload is close to the tuning
parameter ρ. Additionally, we present results for all
expected workloads in Table 5. Each entry in the ta-
ble summarizes the total throughput after running the
same experimental setup presented in Figure 15. We
observe that the robust outperforms the nominal in 10
of our expected workloads, with only 2 workloads where
robust tuning does worse, however, in these cases the
reported throughputs are comparable. In each of these
experiments, the robust tuning outperforms the nominal

resulting in up to a 90% reduction in latency and sys-
tem I/O. Lastly, in Figure 13, the observed workloads
are similar to the expected one (IKL(ŵ, w11) < 0.2),
resulting in a latency increase of 20%.

Balancing Query Times. To determine how the tun-
ings from Endure outperform the nominal tunings we
analyze the query response times for each operation for
an expected workload w. We observe that robust tun-
ings will provide lower performance for the queries that
dominate the expected workload, however, as a tradeoff
these tunings perform exceptionally well in unexpected
operations. For example, Figure 17 shows robust tuning
performs worse in both range queries and empty point
queries, however, in exchange we observe a significant
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Table 5: The system measured normalized delta through-
puts ∆w(ΦN , ΦN ) and their respective tunings for exper-
iments on all expected workloads in B with an optimally
selected ρ.

Expected Φ = (T , mfilt, π)

Workload (w) ΦN ΦR ∆w(ΦN , ΦR)
w0 (5.2, 3.5, L) (5.1, 3.1, L) 0.0
w1 (5.7, 9.4, L) (5.0, 4.2, L) 0.0
w2 (5.8, 5.3, L) (5.0, 1.0, L) 0.1
w3 (100, 0.0, L) (5.4, 1.0, L) 0.4
w4 (17, 3.2, T) (4.6, 1.0, L) 1.5
w5 (5.5, 8.8, L) (5.1, 3.9, L) 0.1
w6 (63, 4.8, L) (8.2, 1.0, L) 0.8
w7 (8.4, 8.2, T) (3.4, 1.0, L) 0.5
w8 (62, 0.0, L) (8.0, 1.0, L) 0.6
w9 (8.3, 6.9, T) (3.3, 1.0, L) 0.8
w10 (5.0, 0.0, L) (5.0, 1.0, L) 0.0
w11 (47, 4.7, L) (11, 1.9, L) 1.4
w12 (6.2, 8.1, T) (2.8, 3.1, L) 0.2
w13 (5.1, 3.5, L) (5.0, 1.0, L) -0.1
w14 (5.1, 0.0, L) (5.0, 1.0, L) -0.1

decrease in the response time of write queries. Hence,
if the executed workload contains writes, robust tun-
ing will increase overall throughput, especially in the
presence of write spikes.
Workload Skew. To verify that Endure works across
workload distributions, we break down the different
query response times in Figure 17. When the keys gen-
erated for the workload follow a Zipfian distribution, we
see that the response time for non-empty read queries is
significantly lowered. This is in part due to keys towards
the top of the tree being repeated, therefore the query
does not need to traverse further down the tree resulting
in an increase in false positives from the Bloom filter.
Regardless, we observe the same patterns for uniform
and Zipfian distributions; Endure tunings achieve a
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Fig. 17: Query times for each operation (empty reads,
non-empty reads, range reads, and writes) with an ex-
pected workload w11. Robust tunings were generated
with ρ = 1.
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Fig. 18: Impact of database size on performance. All
tunings use the same expected workload w11 with ex-
ecuted workloads shown above each graph. Points at
each power of 10 show mbuf and the tuning Φ (L for
leveling, T for tiering).

better tradeoff in performance for the dominant query
types in the expected workload with that of other query
types, thereby preventing large performance regressions.
ENDURE Scales with Data Size. To verify that En-
dure scales, we repeat the previous experiments, while
varying the size of the initial database. Each point in
Figure 18 is calculated based on a series of workload ses-
sions similar to the ones presented in Figures 13 (15) for
the left (right) part of Figure 18. All points use the same
expected workload, therefore the nominal and robust
tunings are the same across each graph. We observe that
the robust and nominal tuning increases buffer memory
as the initial database size grows. As a result, for all
cases, the number of initial levels is the same regardless
of the number of entries. This highlights the importance
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of the number of levels w.r.t performance. Finally, the
performance gap between robust and nominal stays con-
sistent as database size grows, showing that Endure is
effective regardless of data size.

10 Robustness of Flexible Designs

In this section, we explore the nuanced differences be-
tween flexibility and robustness of LSM designs. Under
an ideal scenario, where the expected workload is known
a priori to tuning, the flexibility of K-LSM provides a
high-performance benefit, however, this benefit vanishes
in scenarios where the executed workload changes from
the expected. This observation is in line with the intu-
ition that Endure’s robust tunings proactively compen-
sate for potential changes in the workload distribution
post-deployment, thereby providing better performance
in situations where the executed workload differs from
the expected.

10.1 Experiment Design

To evaluate the robustness of all designs, we design an
experiment to compare different optimal tunings for a
subset of designs listed in Table 3. For each expected
workload in the uncertainty benchmark in Table 4, we
obtain a list of tunings by solving Nominal Tuning
for various LSM data layouts. We also compute a ro-
bust tuning with input ρ = 2. Next, for every observed
workload in B, we calculate the KL-divergence w.r.t. the
expected workload used to obtain each tuning and plot
the average I/Os per query for this observed workload
(C(ŵ, Φ)) versus the KL-divergence. We then execute
the initial expected workload for all designs, reset the
database to the initial state, and then progressively re-
peat this process for workloads further away from the
expected workload. Similar to Section 5.3, we adopt the
following setting for system parameters: the database
initially holds 10 billion with each entry at 1 KB; page
size is 4 KB; and memory budget is set to 10 bits per
element or a total of 10 GB.

10.2 Comparison Results

Figure 19 shows the average I/O per query for various
LSM models. Note that for w11, the performance lines
for K-LSM, Fluid LSM, and Endure’s nominal tuning
slightly overlap, as the configurations are the same. The
same occurs for K-LSM and Fluid LSM on w7. When
evaluating Dostoevsky, we fix memory allocation such
that the buffer size is kept at 2 MB as per convention,
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Fig. 19: The cost of each LSM model as the observed
workload ŵ drifts away from the expected workload w.

while the remaining memory is delegated to storing
Bloom filters [28,69].
Robustness of Various LSM Designs. It should
be noted that in instances where the observed work-
load closely matches the expected workload, Endure’s
robust tunings underperform. This is consistent with
previous experiments and the intuition that robust tun-
ings proactively compensate for potential changes in the
observed workload distribution. As the observed work-
load drifts further from the expected, robust tunings
maintain consistent performance while other tunings
show a steady increase in the average number of I/Os.
This observation can be attributed to the selected tun-
ing. For example, with w7 models such as Dostoevsky
(T = 47, all Ki = 1) and K-LSM (mfilt = 4.4 bits per
entry, T = 48, all Ki = 1) optimally selects larger size
ratios with effectively leveling policies to accommodate
for the expected high amount of writes. In contrast, the
robust tuning (T = 9, π = L) selects a size ratio that
performs reasonably well in comparison, however, the
selected size ratio is small enough to accommodate a
large shift to reads.

In the presence of workload drifts, we observe that
most models, except Lazy Leveling, experience a perfor-
mance degradation similar to Endure’s nominal tuning.
The optimal tuning of Lazy Leveling (mfilt = 4.6 bits
per entry, T = 2) performs robustly when tuned for
a read-heavy workload (w11). It should be noted that
the optimizer selects a size ratio T = 2 that enables
Lazy Leveling to accommodate an increase in writes,
as merge operations are relatively cheap. Furthermore,
increasing the size ratio any further could lead to the cre-
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ation of upper levels that follow a tiering policy, thereby
degrading the performance.

11 Discussion

In this section, we discuss the key insights gained from
benchmarking and testing Endure.

Robustness is All You Need. When deploying LSM
trees, it is evident that tuning with some knowledge
about the workload can improve performance, but ac-
counting for uncertainty in the tuning process can pro-
vide an even greater benefit for performance in the long
run. To support this, in Section 9.3, we show that the
cost model can accurately predict the empirical mea-
surements. Then using our model, we compared over
700 different robust tunings with their nominal counter-
parts over the uncertainty benchmark set B, leading to
approximately 8.6 million comparisons. Robust tunings
comprehensively outperform the nominal tunings in over
80% of these comparisons. We further cross-validated
the relative performance of the nominal and the robust
tunings in over 300 comparisons using RocksDB. The
empirical measurements overwhelmingly confirmed the
validity of our analytical models, and the few instances
of discrepancy in the scale of measured I/Os, such as the
ones discussed in previous sections, are easily explained
based on the structure of the LSM tree.
Leveling is “more” Robust than Tiering. One of
the key takeaways of applying robust tuning to LSM
trees is that leveling is inherently more robust to per-
turbations in workloads when compared to pure tiering.
Note that this is evident from Table 5, where all ro-
bust tunings suggest leveling as the compaction policy.
This observation is in line with the industry practice of
deploying leveling or hybrid leveling over pure tiering.
Robustness is Not Inherent. As evident in Figure 19,
the final takeaway when evaluating robust tunings com-
pared to optimal tuning of other flexible models is that
robustness is not inherent to a model and must be con-
sidered in the tuning process. We observe that flexible
models may provide better initial performance, however,
only Endure, which explicitly accounts for workload
uncertainty in the tuning process, performs well w.r.t.
to a changing workload. While other models may ex-
hibit some degree of robust performance in specific and
limited scenarios, only the robust tuning consistently
performs well in the presence of workload drift across all
different expected workloads. Based on our analytical
and empirical results, we recommend that robust tuning
should always be employed when tuning an LSM tree

unless the future workload distribution is known with
an absolute certainty.
Limitations. One of the key challenges during the
evaluation of tuning configurations in the presence of
uncertainty is in measuring steady-state performance.
Background compactions create variability in perfor-
mance requiring longer database testing sessions to see
accurate performance numbers. To observe trends across
multiple tunings we had to strike a balance between
exhaustive testing and runtime. Using off-the-shelf opti-
mizers, such as the SLSQP solver from SciPy mentioned
in Section 5, present restrictions in terms of the com-
plexity of designs that we can optimally tune. Numerical
solvers are sensitive to hyperparameters such as starting
conditions and step size. Therefore, tuning performance
can greatly vary based on the correct initialization of
such hyperparameters. Furthermore, the stability and
accuracy of numerical solvers suffer with an increase
in the number of decision variables. We observed that
when solving the Robust Tuning problem for the
most flexible designs, the combination of hyperparame-
ter sensitivity and numerical instability with additional
decision variables leads to suboptimal solutions.

While we have deployed and tested robust tuning on
LSM trees, the robust paradigm of Endure is a gener-
alization of a minimization problem that is at the heart
of any database tuning problem. Hence, similar robust
optimization approaches can be applied to any database
tuning problem assuming that the underlying cost model
is known, and each cost model component is convex or
can be accurately approximated by a surrogate.

12 Related Work

Database tuning is a notoriously hard problem, however,
there has been a plethora of recent research. We provide
a discussion of related works around the field of data
systems tuning.

Tuning Data Systems. Database systems are noto-
rious for having numerous tuning knobs. These tuning
knobs control fine-grained decisions (e.g., number of
threads, amount of memory for bufferpool, storage size
for logging) as well as basic architectural and physical
design decisions about partitioning, index design, materi-
alized views that affect storage and access patterns, and
query execution [15,21]. The database research commu-
nity has developed several tools to deal with such tuning
problems. These tools can be broadly classified as offline
workload analysis for index and views design [2,3,20,24,
83,91], and periodic online workload analysis [16,74,75,
76] to capture workload drift [39]. In addition, there has
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been research on reducing the magnitude of the search
space of tuning [15,25] and on deciding the optional
data partitioning [9,63,78,80,81]. These approaches as-
sume that the input information about resources and
workload is accurate. When it is proved to be inaccurate,
performance is typically severely impacted.
Adaptive & Self-designing Data Systems. A first
attempt to address this problem was the design of adap-
tive systems which had to pay additional transition costs
(e.g., when deploying a new tuning) to accommodate
shifting workloads [43,35,36,77]. More recently the re-
search community has focused on using machine learning
to learn the interplay of tuning knobs, and especially of
the knobs that are hard to analytically model to perform
cost-based optimization. This recent work on self-driving
database systems [4,59,65] or self-designing database
systems [42,44,45,46] is exploiting new advancements
in machine learning to tune database systems and re-
duce the need for human intervention, however, they
also yield suboptimal results when the workload and
resource availability information is inaccurate.
Robust Database Physical Design. One of the key
database tuning decisions is physical design, that is, the
decision of which set of auxiliary structures should be
used to allow for the fastest execution of future queries.
Most of the existing systems use past workload infor-
mation as a representative sample for future workloads,
which often leads to suboptimal decisions when there
is significant workload drift. Cliffguard [60] is the first
attempt to use unconstrained robust optimization to
find a robust physical design. Their method is derived
from Bertsimas et al. in [12], a numerical optimization
approach using alternating gradient ascent-descent to
optimize problems without closed-form objectives. In
contrast to Cliffguard, Endure focuses on the LSM tree
tuning problem which uses an analytical closed form ob-
jective in Equation (2). This allows us to directly solve
a Lagrangian dual problem instead of relying upon nu-
merical optimization techniques. Furthermore, we found
that the approach in Cliffguard, when applied to our
objective, fails to converge even after an extensive hy-
perparameter search.

13 Conclusion

In this work, we explored the impact of workload uncer-
tainty and LSM design flexibility on the performance
of LSM tree databases. Based on our explorations, we
introduce Endure – a robust tuning paradigm that
recommends robust designs to mitigate performance
degradation under scenarios of deviating workloads. We
showed that in the presence of uncertainty, Endure

increases database throughput compared to standard
tunings by up to 5×. Furthermore, we proposed a uni-
fied LSM design with an associated flexible cost model
that can express multiple LSM data layout designs, and
provide evidence that our cost model closely matches the
behavior measured on a database system. We used this
cost model to analyze the robustness of flexible models
and provide evidence that robustness is not inherent
to a particular design, rather it must be an important
consideration during the tuning process. Through both
model-based and extensive experimental evaluation of
Endure within the state-of-the-art LSM-based stor-
age engine RocksDB, we show that the robust tuning
methodology consistently outperforms classical tuning
strategies. Endure can be an indispensable tool for
database administrators to evaluate deployed tunings
performance, as well as recommend optimal tunings
without resorting to expensive database experiments.

Acknowledgements

We thank Anwesha Saha and Sakshi Sharma for their
help in the experimental analysis and the anonymous
reviewers for their valuable feedback. This work is par-
tially funded by an IBM Ph.D. Fellowship, a Red Hat
Incubation Award, a Meta gift, and NSF Grants No.
IIS-1813406, No. IIS-1908510, and No. IIS-2144547.

References

1. Absalyamov, I., Carey, M.J., Tsotras, V.J.: Lightweight
Cardinality Estimation in LSM-based Systems. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 841–855 (2018). DOI
10.1145/3183713.3183761

2. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P.,
Narasayya, V.R., Syamala, M.: Database Tuning Advisor
for Microsoft SQL Server 2005. In: Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB),
pp. 1110–1121 (2004). DOI 10.1145/1066157.1066292

3. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated Se-
lection of Materialized Views and Indexes in SQL Databases.
In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 496–505 (2000). DOI
10.5555/645926.671701

4. Aken, D.V., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic
Database Management System Tuning Through Large-scale
Machine Learning. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 1009–
1024 (2017). DOI 10.1145/3035918.3064029

5. Alkowaileet, W.Y., Alsubaiee, S., Carey, M.J.: An LSM-
based Tuple Compaction Framework for Apache AsterixDB.
Proceedings of the VLDB Endowment 13(9), 1388–1400
(2020). DOI 10.14778/3397230.3397236

6. Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar,
V.R., Bu, Y., Carey, M.J., Cetindil, I., Cheelangi, M., Faraaz,
K., Gabrielova, E., Grover, R., Heilbron, Z., Kim, Y.S., Li,



Towards Flexibility and Robustness of LSM Trees 23

C., Li, G., Ok, J.M., Onose, N., Pirzadeh, P., Tsotras, V.J.,
Vernica, R., Wen, J., Westmann, T.: AsterixDB: A Scalable,
Open Source BDMS. Proceedings of the VLDB Endowment
7(14), 1905–1916 (2014). DOI 10.14778/2733085.2733096

7. Apache: Apache HBase (2013). URL http://hbase.apache.
org/

8. Apache: Cassandra. http://cassandra.apache.org (2023)
9. Athanassoulis, M., Bøgh, K.S., Idreos, S.: Optimal Col-

umn Layout for Hybrid Workloads. Proceedings of the
VLDB Endowment 12(13), 2393–2407 (2019). DOI
10.14778/3358701.3358707

10. Ben-Tal, A., den Hertog, D., Waegenaere, A.D., Melenberg,
B., Rennen, G.: Robust Solutions of Optimization Problems
Affected by Uncertain Probabilities. Management Science
59(2), 341–357 (2013). DOI 10.1287/mnsc.1120.1641

11. Ben-Tal, A., Nemirovski, A.: Robust Convex Optimization.
Mathematics of Operations Research 23(4), 769–805 (1998).
DOI 10.1287/moor.23.4.769

12. Bertsimas, D., Nohadani, O., Teo, K.M.: Robust Optimiza-
tion for Unconstrained Simulation-Based Problems. Opera-
tions Research 58(1), 161–178 (2010). DOI 10.1287/opre.
1090.0715

13. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM 13(7), 422–
426 (1970). DOI 10.1145/362686.362692

14. Bortnikov, E., Braginsky, A., Hillel, E., Keidar, I., Sheffi,
G.: Accordion: Better Memory Organization for LSM Key-
Value Stores. Proceedings of the VLDB Endowment 11(12),
1863–1875 (2018). DOI 10.14778/3229863.3229873

15. Bruno, N., Chaudhuri, S.: Automatic physical database
tuning. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 227–238 (2005).
DOI 10.1145/1066157.1066184

16. Bruno, N., Chaudhuri, S.: To Tune or not to Tune? A
Lightweight Physical Design Alerter. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pp. 499–510 (2006). DOI 10.5555/1182635.1164171

17. Cao, Z., Dong, S., Vemuri, S., Du, D.H.C.: Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Work-
loads at Facebook. In: Proceedings of the USENIX Confer-
ence on File and Storage Technologies (FAST), pp. 209–223
(2020). DOI 10.5555/3386691.3386712

18. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach,
D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.:
Bigtable: A Distributed Storage System for Structured Data.
In: Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 205–218
(2006). DOI 10.5555/1267308.1267323

19. Chaudhuri, S., Dageville, B., Lohman, G.M.: Self-Managing
Technology in Database Management Systems. In: Pro-
ceedings of the International Conference on Very Large
Data Bases (VLDB), p. 1243 (2004). DOI 10.1016/
B978-012088469-8.50116-9

20. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven In-
dex Selection Tool for Microsoft SQL Server. In: Proceedings
of the International Conference on Very Large Data Bases
(VLDB), pp. 146–155 (1997). DOI 10.5555/645923.673646

21. Chaudhuri, S., Narasayya, V.R.: AutoAdmin ’What-if’ Index
Analysis Utility. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 367–
378 (1998). DOI 10.1145/276304.276337

22. Chaudhuri, S., Weikum, G.: Foundations of automated
database tuning. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 964–
965 (2005). DOI 10.1145/1066157.1066305

23. Chohan, N., Castillo, C., Spreitzer, M., Steinder, M.,
Tantawi, A.N., Krintz, C.: See Spot Run: Using Spot In-
stances for MapReduce Workflows. In: Proceedings of

USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud) (2010). DOI 10.5555/1863103.1863110

24. Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M.,
Ziauddin, M.: Automatic SQL tuning in oracle 10g. In:
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pp. 1098–1109 (2004). DOI 10.5555/
1316689.1316784

25. Dash, D., Polyzotis, N., Ailamaki, A.: CoPhy: A Scalable,
Portable, and Interactive Index Advisor for Large Workloads.
Proceedings of the VLDB Endowment 4(6), 362–372 (2011).
DOI 10.14778/1978665.1978668

26. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: Optimal
Navigable Key-Value Store. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp. 79–94 (2017). DOI 10.1145/3035918.3064054

27. Dayan, N., Athanassoulis, M., Idreos, S.: Optimal Bloom
Filters and Adaptive Merging for LSM-Trees. ACM Trans-
actions on Database Systems (TODS) 43(4), 16:1–16:48
(2018). DOI 10.1145/3276980

28. Dayan, N., Idreos, S.: Dostoevsky: Better Space-Time Trade-
Offs for LSM-Tree Based Key-Value Stores via Adaptive
Removal of Superfluous Merging. In: Proceedings of the
ACM SIGMOD International Conference on Management
of Data, pp. 505–520 (2018). DOI 10.1145/3183713.3196927

29. Dayan, N., Idreos, S.: The Log-Structured Merge-Bush & the
Wacky Continuum. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), pp. 449–466 (2019). DOI 10.1145/3299869.3319903

30. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-
value Store. ACM SIGOPS Operating Systems Review
41(6), 205–220 (2007). DOI 10.1145/1323293.1294281

31. Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor,
T., Strum, M.: Optimizing Space Amplification in RocksDB.
In: Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR) (2017). URL https://www.
cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf

32. Facebook: RocksDB (2021). URL https://github.com/
facebook/rocksdb

33. Galante, G., Bona, L.C.E.D.: A Survey on Cloud Comput-
ing Elasticity. In: Proceedings of the IEEE International
Conference on Utility and Cloud Computing (UCC), pp.
263–270 (2012). DOI 10.1109/UCC.2012.30

34. Google: LevelDB (2021). URL https://github.com/
google/leveldb/

35. Graefe, G., Kuno, H.: Self-selecting, self-tuning, incremen-
tally optimized indexes. In: Proceedings of the International
Conference on Extending Database Technology (EDBT),
pp. 371–381 (2010). DOI 10.1145/1739041.1739087

36. Graefe, G., Kuno, H.A.: Adaptive indexing for relational
keys. In: Proceedings of the IEEE International Confer-
ence on Data Engineering Workshops (ICDEW), pp. 69–74
(2010). DOI 10.1109/ICDEW.2010.5452743

37. Hayes, B.: Cloud computing. Communications of the ACM
51(7), 9–11 (2008). DOI 10.1145/1364782.1364786

38. Herbst, N.R., Kounev, S., Reussner, R.H.: Elastic-
ity in Cloud Computing: What It Is, and What It
Is Not. In: Proceedings of the International Con-
ference on Autonomic Computing (ICAC), pp. 23–
27 (2013). URL https://www.usenix.org/conference/
icac13/technical-sessions/presentation/herbst

39. Holze, M., Haschimi, A., Ritter, N.: Towards workload-
aware self-management: Predicting significant workload
shifts. Proceedings of the IEEE International Conference
on Data Engineering (ICDE) pp. 111–116 (2010). DOI
10.1109/ICDEW.2010.5452738

http://hbase.apache.org/
http://hbase.apache.org/
https://www.cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://www.cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/google/leveldb/
https://github.com/google/leveldb/
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst


24 Andy Huynh et al.

40. Huang, G., Cheng, X., Wang, J., Wang, Y., He, D., Zhang,
T., Li, F., Wang, S., Cao, W., Li, Q.: X-Engine: An Opti-
mized Storage Engine for Large-scale E-commerce Trans-
action Processing. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 651–
665 (2019). DOI 10.1145/3299869.3314041

41. Huynh, A., Chaudhari, H.A., Terzi, E., Athanassoulis, M.:
Endure: A Robust Tuning Paradigm for LSM Trees Un-
der Workload Uncertainty. Proceedings of the VLDB En-
dowment 15(8), 1605–1618 (2022). DOI 0.14778/3529337.
3529345

42. Idreos, S., Dayan, N., Qin, W., Akmanalp, M., Hilgard, S.,
Ross, A., Lennon, J., Jain, V., Gupta, H., Li, D., Zhu, Z.:
Design Continuums and the Path Toward Self-Designing
Key-Value Stores that Know and Learn. In: Proceedings
of the Biennial Conference on Innovative Data Systems
Research (CIDR) (2019). URL https://www.cidrdb.org/
cidr2019/papers/p143-idreos-cidr19.pdf

43. Idreos, S., Kersten, M.L., Manegold, S.: Database Cracking.
In: Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR) (2007). URL https://www.
cidrdb.org/cidr2007/papers/cidr07p07.pdf

44. Idreos, S., Kraska, T.: From Auto-tuning One Size Fits All
to Self-designed and Learned Data-intensive Systems. In:
Proceedings of the ACM SIGMOD International Conference
on Management of Data (2019). DOI 10.1145/3299869.
3314034

45. Idreos, S., Zoumpatianos, K., Athanassoulis, M., Dayan, N.,
Hentschel, B., Kester, M.S., Guo, D., Maas, L.M., Qin, W.,
Wasay, A., Sun, Y.: The Periodic Table of Data Structures.
IEEE Data Engineering Bulletin 41(3), 64–75 (2018)

46. Idreos, S., Zoumpatianos, K., Hentschel, B., Kester, M.S.,
Guo, D.: The Data Calculator: Data Structure Design and
Cost Synthesis from First Principles and Learned Cost
Models. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 535–550 (2018).
DOI 10.1145/3183713.3199671

47. Influxdata: In-memory indexing and the Time-
Structured Merge Tree (TSM) (2021). URL
https://docs.influxdata.com/influxdb/v1.8/
concepts/storage_engine/

48. Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S.,
Kanneganti, R.: Incremental Organization for Data Record-
ing and Warehousing. In: Proceedings of the International
Conference on Very Large Data Bases (VLDB), pp. 16–25
(1997). DOI 10.5555/645923.671013

49. Kim, T., Behm, A., Blow, M., Borkar, V., Bu, Y., Carey,
M.J., Hubail, M., Jahangiri, S., Jia, J., Li, C., Luo, C.,
Maxon, I., Pirzadeh, P.: Robust and efficient memory man-
agement in Apache AsterixDB. Software - Practice and
Experience 50(7), 1114–1151 (2020). DOI 10.1002/spe.2799

50. Kim, Y.S., Kim, T., Carey, M.J., Li, C.: A Comparative
Study of Log-Structured Merge-Tree-Based Spatial Indexes
for Big Data. In: Proceedings of the IEEE International Con-
ference on Data Engineering (ICDE), pp. 147–150 (2017).
DOI 10.1109/ICDE.2017.61

51. Kraska, T.: Towards instance-optimized data systems. Pro-
ceedings of the VLDB Endowment 14(12), 3222–3232 (2021).
DOI 10.14778/3476311.3476392

52. Kullback, S., Leibler, R.A.: On Information and Sufficiency.
The Annals of Mathematical Statistics 22(1), 79–86 (1951).
DOI 10.1214/aoms/1177729694

53. Luo, C.: Breaking Down Memory Walls in LSM-based Stor-
age Systems. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 2817–2819
(2020). DOI 10.1145/3318464.3384399

54. Luo, C., Carey, M.J.: On Performance Stability in LSM-
based Storage Systems. Proceedings of the VLDB En-
dowment 13(4), 449–462 (2019). DOI 10.14778/3372716.
3372719

55. Luo, C., Carey, M.J.: Breaking Down Memory Walls: Adap-
tive Memory Management in LSM-based Storage Systems.
Proceedings of the VLDB Endowment 14(3), 241–254
(2020). DOI 10.5555/3430915.3442425

56. Luo, C., Carey, M.J.: LSM-based Storage Techniques: A
Survey. The VLDB Journal 29(1), 393–418 (2020). DOI
10.1007/s00778-019-00555-y

57. Luo, C., Tözün, P., Tian, Y., Barber, R., Raman, V., Si-
dle, R.: Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP. In: Proceedings of the International Conference on
Extending Database Technology (EDBT), pp. 1–12 (2019).
DOI 10.5441/002/edbt.2019.02

58. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W.,
Idreos, S.: Rosetta: A Robust Space-Time Optimized Range
Filter for Key-Value Stores. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp. 2071–2086 (2020). DOI 10.1145/3318464.3389731

59. Ma, L., Aken, D.V., Hefny, A., Mezerhane, G., Pavlo,
A., Gordon, G.J.: Query-based Workload Forecasting for
Self-Driving Database Management Systems. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 631–645 (2018). DOI
10.1145/3183713.3196908

60. Mozafari, B., Goh, E.Z.Y., Yoon, D.Y.: CliffGuard: A Prin-
cipled Framework for Finding Robust Database Designs.
In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 1167–1182 (2015).
DOI 10.1145/2723372.2749454

61. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-
structured merge-tree (LSM-tree). Acta Informatica 33(4),
351–385 (1996). DOI 10.1007/s002360050048

62. Özcan, F., Tian, Y., Tözün, P.: Hybrid Transac-
tional/Analytical Processing: A Survey. In: Proceedings of
the ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1771–1775 (2017). DOI 10.1145/3035918.
3054784

63. Papadomanolakis, S., Ailamaki, A.: AutoPart: Automating
Schema Design for Large Scientific Databases Using Data
Partitioning. In: Proceedings of the International Confer-
ence on Scientific and Statistical Database Management
(SSDBM), p. 383 (2004). DOI 10.1109/SSDBM.2004.19

64. Papon, T.I., Athanassoulis, M.: A Parametric I/O Model
for Modern Storage Devices. In: Proceedings of the Interna-
tional Workshop on Data Management on New Hardware
(DAMON) (2021). DOI 10.1145/3465998.3466003

65. Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L.,
Menon, P., Mowry, T.C., Perron, M., Quah, I., Santurkar,
S., Tomasic, A., Toor, S., Aken, D.V., Wang, Z., Wu, Y.,
Xian, R., Zhang, T.: Self-Driving Database Management
Systems. In: Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR) (2017)

66. Pezzini, M., Feinberg, D., Rayner, N., Edjlali, R.:
Hybrid Transaction/Analytical Processing Will Fos-
ter Opportunities for Dramatic Business Innovation.
https://www.gartner.com/doc/2657815/ (2014)

67. Ren, K., Zheng, Q., Arulraj, J., Gibson, G.: SlimDB: A
Space-Efficient Key-Value Storage Engine For Semi-Sorted
Data. Proceedings of the VLDB Endowment 10(13), 2037–
2048 (2017). DOI 10.14778/3151106.3151108

68. Research, G.V.: Private Cloud Server Market Size,
Share & Trend Analysis Report By Hosting Type
(User Hosting, Provider Hosting), By Organization
Type (SME, Large Enterprise), By Region, And

https://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
https://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
https://www.cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://www.cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://docs.influxdata.com/influxdb/v1.8/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.8/concepts/storage_engine/


Towards Flexibility and Robustness of LSM Trees 25

Segment Forecasts, 2019 - 2025. White Paper
(2019). URL https://www.grandviewresearch.com/
industry-analysis/private-cloud-server-market

69. RocksDB: RocksDB Tuning Guide.
https://github.com/facebook/rocksdb/wiki/RocksDB-
Tuning-Guide (2021)

70. Sarkar, S., Athanassoulis, M.: Dissecting, Designing, and
Optimizing LSM-based Data Stores. In: Proceedings of the
ACM SIGMOD International Conference on Management of
Data, pp. 2489–2497 (2022). DOI 10.1145/3514221.3522563

71. Sarkar, S., Dayan, N., Athanassoulis, M.: The LSM Design
Space and its Read Optimizations. In: Proceedings of the
IEEE International Conference on Data Engineering (ICDE)
(2023). DOI 10.1109/ICDE55515.2023.00273

72. Sarkar, S., Papon, T.I., Staratzis, D., Athanassoulis, M.:
Lethe: A Tunable Delete-Aware LSM Engine. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 893–908 (2020). DOI
10.1145/3318464.3389757

73. Sarkar, S., Staratzis, D., Zhu, Z., Athanassoulis, M.: Con-
structing and Analyzing the LSM Compaction Design Space.
Proceedings of the VLDB Endowment 14(11), 2216–2229
(2021). DOI 10.14778/3476249.3476274

74. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.:
COLT: Continuous On-Line Database Tuning. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 793–795 (2006). DOI
10.1145/1142473.1142592

75. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-
Line Index Selection for Shifting Workloads. In: Proceedings
of the IEEE International Conference on Data Engineering
Workshops (ICDEW), pp. 459–468 (2007). DOI 10.1109/
ICDEW.2007.4401029

76. Schnaitter, K., Polyzotis, N.: Semi-automatic index tuning.
Proceedings of the VLDB Endowment 5(5), 478–489 (2012).
DOI 10.14778/2140436.2140444

77. Schuhknecht, F.M., Dittrich, J., Linden, L.: Adaptive Adap-
tive Indexing. In: Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pp. 665–676
(2018). DOI 10.1109/ICDE.2018.00066

78. Serafini, M., Taft, R., Elmore, A.J., Pavlo, A., Aboul-
naga, A., Stonebraker, M.: Clay: Fine-Grained Adaptive
Partitioning for General Database Schemas. Proceedings
of the VLDB Endowment 10(4), 445–456 (2016). DOI
10.14778/3025111.3025125

79. Shasha, D.E., Bonnet, P.: Database Tuning: Principles, Ex-
periments, and Troubleshooting Techniques. In: Proceedings
of the International Conference on Very Large Data Bases
(VLDB) (2002). DOI 10.1145/1024694.1024720

80. Sun, L., Franklin, M.J., Krishnan, S., Xin, R.S.: Fine-
grained Partitioning for Aggressive Data Skipping. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 1115–1126 (2014). DOI
10.1145/2588555.2610515

81. Sun, L., Franklin, M.J., Wang, J., Wu, E.: Skipping-oriented
Partitioning for Columnar Layouts. Proceedings of the
VLDB Endowment 10(4), 421–432 (2016). DOI 10.14778/
3025111.3025123

82. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and
Practice of Bloom Filters for Distributed Systems. IEEE
Communications Surveys & Tutorials 14(1), 131–155 (2012).
DOI 10.1109/SURV.2011.031611.00024

83. Valentin, G., Zuliani, M., Zilio, D.C., Lohman, G.M., Skel-
ley, A.: DB2 Advisor: An Optimizer Smart Enough to Rec-
ommend its own Indexes. In: Proceedings of the IEEE
International Conference on Data Engineering (ICDE), pp.
101–110 (2000). DOI 10.1109/ICDE.2000.839397

84. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M.,
Reddy, T., et al. Cournapeau D: SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Meth-
ods 17, 261–272 (2020). DOI 10.1038/s41592-019-0686-2

85. Wikipedia contributors: Bloom filter – Wikipedia, the free
encyclopedia (2021). URL https://en.wikipedia.org/w/
index.php?title=Bloom_filter. [Online; accessed 8-June-
2021]

86. WiredTiger: Wiredtiger (2021). URL https://github.com/
wiredtiger/wiredtiger

87. Wolski, R., Brevik, J., Chard, R., Chard, K.: Probabilis-
tic guarantees of execution duration for Amazon spot
instances. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis (SC), pp. 18:1—-18:11 (2017). DOI
10.1145/3126908.3126953

88. Yang, L., Wu, H., Zhang, T., Cheng, X., Li, F., Zou, L.,
Wang, Y., Chen, R., Wang, J., Huang, G.: Leaper: A Learned
Prefetcher for Cache Invalidation in LSM-tree based Storage
Engines. Proceedings of the VLDB Endowment 13(11),
1976–1989 (2020). DOI 10.14778/3407790.3407803

89. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky,
M., Keeton, K., Pavlo, A.: SuRF: Practical Range Query
Filtering with Fast Succinct Tries. In: Proceedings of the
ACM SIGMOD International Conference on Management
of Data, pp. 323–336 (2018). DOI 10.1145/3183713.3196931

90. Zhang, T., Wang, J., Cheng, X., Xu, H., Yu, N., Huang,
G., Zhang, T., He, D., Li, F., Cao, W., Huang, Z., Sun,
J.: FPGA-Accelerated Compactions for LSM-based Key-
Value Store. In: Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pp. 225–237 (2020).
DOI 10.5555/3386691.3386713

91. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm,
A., Garcia-Arellano, C., Fadden, S.: DB2 Design Ad-
visor: Integrated Automatic Physical Database Design.
In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 1087–1097 (2004). DOI
10.5555/1316689.1316783

https://www.grandviewresearch.com/industry-analysis/private-cloud-server-market
https://www.grandviewresearch.com/industry-analysis/private-cloud-server-market
https://en.wikipedia.org/w/index.php?title=Bloom_filter
https://en.wikipedia.org/w/index.php?title=Bloom_filter
https://github.com/wiredtiger/wiredtiger
https://github.com/wiredtiger/wiredtiger

	Introduction
	Background on LSM Trees
	Preliminaries
	The Cost Model of LSM Trees
	The Nominal Tuning Problem
	The Robust Tuning Problem
	Uncertainty Benchmark
	Model-Based Evaluation
	System-Based Evaluation
	Robustness of Flexible Designs
	Discussion
	Related Work
	Conclusion

